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Absztrakt.

A cikkben a kooperativ jatékelmélet fogalmait athakzuk egy ellatasi lanc esetében. Az
ostorcsapas-hatas elemeit egy beszallito-térrahtasi lancban ragadjuk meg egy Arrow-
Karlin tipusi modellben linearis készletezési ésnviex termelési koltség mellett.
Feltételezzik, hogy mindkét vallalat minimalizagafontosabb kdltségeit. Két tikddesi
rendszert hasonlitunk 6ssze: egy hierarchikus dbioiatali rendszert, amikoroéskor a
termeb, majd a beszallitdo optimalizalja helyzetét, mayy eentralizalt (kooperativ) modellt,
amikor a véllalatok az egyittes koltségiket minigddjlak. A kérdés ugy meril fel, hogy a
csokkentett ostorcsapas-hatas esetén hogyan asszak részveédk ebben a transzferalhato
hasznossagu kooperativ jatékban.

Kulcsszavak: Optimalis iranyitas, Ellatasi lanc, Ostorcsapasshakooperativ jatékelmélet

Abstract.

In this paper we apply cooperative game theory eptscto analyze supply chainBhe
bullwhip effect in a two-stage supply chain (suppinanufacturer) in the framework of the
Arrow-Karlin model with linear-convex cost functiems considered. It is assumed that both
firms minimize their relevant costs, and two casee examined: the supplier and the
manufacturer minimize their relevant costs in a etd@lized and in a centralized
(cooperative) way. The question of how to sharesthaengs of the decreased bullwhip effect
in the centralized (cooperative) model is answdrgdransferable utility cooperative game
theory tools.

Keywords: Optimal control, Supply chain, Bullwhip effect, Querative game theory



1 Introduction

In thesupply chain literature so far onlyon-cooper ative game theory concepts were applied,
see e.g. Kogan and Tapiero (2007) and Sethi ¢2@05). In this paper we analyze supply
chains bycooperative game theory tools. Our main question is that how the manufactand
the supplier should share the savings they actbguearmonizing their production plans. We
apply the following cooperative game theory consetttecore (Gillies (1959)), thestable set
(von Neumann and Morgenstern (1944)), tBmapley value (Shapley (1953)) and the
nucleolus (Schmeidler (1969)) to answer the above question.

In order to demonstrate the efficiency of coopeain a supply chain we consider the so
called bullwhip effect. The bullwhip effect explains the fluctuations sdéles (demand),
manufacturing and supply. The bullwhip effect waistfobserved by Forrester (1961), later
Lee et al. (1997) rediscovered this phenomenony Thentioned four basic causes of the
bullwhip effect:

- Forrester effect, or lead-times and demand sigralgssing,
- Burbidge effect, or order batching,

- Houlihan effect, or rationing and gaming,

- promotion effect, or price fluctuations.

These (new) names were introduced by Disney ¢2@03).

There are two basic models to investigate the meriprocesses of a firm: the
Wagner-Whitin and the Arrow-Karlin model. Both mé¢gldave a stock-flow identity and a
cost function. The difference between them lieshia cost functions. The well-known lot
sizing model of Wagner and Whitin (1958) assumemrcave cost function. The second
basic model applies a convex cost function.

The basis of this investigation is the well-knowrrrdw-Karlin type dynamic
production-inventory model (Arrow and Karlin, 195&) this model the inventory holding
cost is a linear function and the production cesa inon-decreasing and convex function of
the production level. The latest empirical analysee Ghali (2003), shows that the convexity
of the cost function is a reasonable assumption.

The main goal of this paper is to demonstrate ¢baperative game theory tools can
be applied to supply chain analysis. We considelAmow-Karlin-type two-stage supply
chain and analyse whether the bullwhip effect apgpmathis model. To show that because of
the bullwhip effect the cooperation of the manufeet and the supplier induces savings, we
develop two models: a decentralized and a censchlfarow-Karlin-type supply chain model.

The decentralized model assumes that first the faatwrer solves her production
planning problem (the market demand is given exogsly) and her ordering process is
based on the optimal production plan. Then the l&mpminimizes her costs on the basis of
the ordering of the manufacturer. In the centralingodel it is assumed that the participants
of the supply chain cooperate, i.e. they minimieedum of their costs.

In the next step we compare the production-invengbrategies and the costs of the
manufacturer and supplier in the two models to stiet the bullwhip effect can be reduced
by cooperation (centralized model). This cooperatian be defined as a kind of information
sharing between the parties of the supply chain.

Finally, we discuss the question of how the martufac and the supplier should share
the savings their cooperation induces. At this paie use concepts dfansferable utility
cooper ative games.

The paper is organized as follows. The decenti@dlimedel is discussed in Section 2.
Section 3 analyzes the centralized (cooperativgplguchain model. In Section 4 we



introduce some concepts of cooperative game thaodydefine supply chain (cooperative)
games given by the models discussed in Sectionsd23a Moreover, we apply the above
mentioned four solution concepts of transferabliétyitcooperative games to answer the
guestion of how the manufacturer and the supphieukl share the savings, the result of their
cooperation. An exact number example is given ictiBe 5. The last section briefly
concludes.

2 The decentralized system

We consider a simple supply chain consisting of fiwos: a supplier and a manufacturer. We
assume that the firms are independent, i.e. eadtesniaer decision to minimize her own
costs. The firms have two stores: a store for raatenmls and a store for end products.
Moreover, we assume that the input stores are emetyhe firms can order suitable quantity
and that they can get the ordered quantity. Thdymion processes have a known, constant
lead time. The material flow of the model is degitin Figure 1.

Supplier Manufacturer

_v_,. Production v v_, Production _V

P(t)  Pd1) P(t) Pu(t) Pu(t) Pu(t)  D(1)
| |

Figure 1 Material flow in the models

The following parameters are used in the models:

T length of the planning horizon,

D(t) the rate of demand, it is a continuous and difféable functiont D[O,T],
hm the inventory holding coefficient in the manufaetr’s product store,

hs the inventory holding coefficient in the suppkeproduct store,

Fm(Pm(t)) the production cost of the manufacturer at timé is a non-decreasing and
strictly convex function,

F<(Ps(1)) the production cost of the supplier at titpét is a non-decreasing and strictly
convex function.

The decision variables:

| ..(t) the inventory level of the manufactured produds non-negativet D[O,T],
I.(t) the inventory level of the supplied product, ih@n-negativet D[O,T],
P.(t) the rate of manufacturing, it is non-negatit/E,[O,T],

P.(t) the rate of supply, it is non-negativé,] [O,T].

The decentralized model describes the situation revhithe supplier and the
manufacturer optimize independently, we mean theufe@aturer determines its optimal



production-inventory strategy first (the market @ is given exogenously), then she orders
the necessary quantity of products to meet the knd@mand. Then the supplier accepts the
order and minimizes her own costs. The cost funstiof the supplier and the manufacturer
consist of two parts: the quadratic production €astd the inventory costs.

Next, we model the manufacturer in this Arrow-Kadinvironment. The manufacturer

solves the following problem:

]h O, () +F, (P,@)dt - min (1)
S.t. i
[,() =P,() D), 1,0 =1, 0<t<T (2)

Assume that the optimal production-inventory policy the manufacturer is
(I,ﬁi([)l P (D]) in model (1)-(2) and the manufacturer ord®s . {hen the supplier solves the

following problem:

:}[hs 0,(t) + F,(P,(H)dt —~ min (3)
s.t.
() =P,®)-Pi(),1,0) =1y, O0<t<T (4)
" Notice that problem (3)-(4) has the same planniogzon [0,T] as that of model (1)-

To solve problem (1)-(2) we apply the PontryagiMaximum Principle (see e.g.
Feichtinger and Hartl, (1986), Seierstad and Sydsagl987)). The Hamiltonian function of
this problem is as follows:

Hon (1 (), P (0, @ (0), 1) = =[h, T (€) + Foy (P )] + @ (8) TP (1) = S(1)).

This problem is an optimal control problem with @wstate variable constraints. To
obtain the necessary and sufficient conditionspinaality we need the Lagrangian function:

Lo (1 (1), P (0,40, (1), A (0, 1) = H, (1, (1), B (0,00, (1), 1) + A, (t) O, (t)

Lemma 1 (Iﬁ(D,Pnf(D) Is the optimal solution of problem (1)-(2) if aodly if there exists
continuous function,(t puch that for ald<st<T ¢, (t) # 0 and

(@)

B (HONAONZSCRNORI SPANIAY

l/’m(t):_ dm(t)

(b)



max{H,, (1 8(t), P, (1) (1)) = H, (1500, PEE) @ (t).t)

P, (t)=0

= max{H, (13(1).P, () ().t} =0, () PA(t) - F, (PE(1)),

P.(1)=0
©  At)Ogt)=0 A.t)=0,

@ g, (r)os(T)=0 ¢,(r)=0

We do not prove the above lemma, its proof candumd in the above mentioned
literature. After optimal production strate@] [ i5)given we can solve problem (3)-(4).
The Hamiltonian function of problem (3)-(4) is adldws

H, (1,0, RO.@,0.) = 00 + F(P0)] +¢.0 dr.0) - P2 1)
This problem is also an optimal control problemhapure state variable constraints.

To get the necessary and sufficient conditions pifnmality, we need again the Lagrangian
function:

L (1 (®), P, (0. A,0.1) = H (1. 0), RO, (1)) + A (t) O, t).
The proof of the following lemma can be found agaithe mentioned literature.

Lemma 2 (IS(m P? ([ﬂ) is optimal solution of problem (3)-(4) if and onily there exists
continuous functiony (t )uch that for alDst<T ¢ (t) # 0 and

(a)

o)=L, Ps(;gt)(,:,;ls(t),ﬁs(t),t) enn )
(b)

PZE‘S;EJ{HS(IS(t),PS(t),ws(t),t)}: H. (120, P () (t).t)

= F%;(O{H s(l g(t)ﬂ(t)’lﬂs(t),t)} :l/ls(t)[Psd(t)— FS(PSd(t)),

) A)oit)=0 Aft)=0,
@ g (r)ad()=0 g(r)=o0

Later we use the following notations: Igf, and J¢ be the optimal values of cost
functions (1) and (3) respectively, i.e. let

33 = ][hm SHGRYAHO)

0



and

= }[h 0ot +F, (P (t) ot .

3 The centralized system

In this section we solve the centralized model, the model, where the manufacturer and
supplier coordinate their decisions. The modekifoows

}[nnu ) +F, (P, )+ h,O.t)+F(Pt))lt - min (5)
s.t.
| (t)=P,(t)-D(t), 0<t<T (6)
() =P(t)-P.(t), 0<t<T, (7)

N (0) I s
(Is«»j'(le ®
The Hamiltonian function of model (5)-(8) is

H (1 (), Po(®), 15(8), P (), ¢ (), &0 (0)) =
—h, 0,,(0) = F, (P.(0) —h O,(t) - F(R.0) + ¢, OP, (1) - SO + . (t) R.1) - B, ()]

The Lagrangian function is

L1 (), P, 14(), Po(0),80 (), @4 (£), A (£), A (8),1) =
= H(1,,(6), P(0), 1,(t), P, ¢, 0,00, (1), 1)+ A, (t) 0, () + A, () O, )

The following lemma formalizes the well-known opéility conditions. Its proof can be found
in the literature mentioned in the previous section

Lemma 3 (I;([ﬂ Pr(OLls(y Pj([ﬂ) is optimal solution of problem (5)-(8) if and onifythe
following points hold

OL(15(0), PV, 1£(0), P 0 z(/gn(t) VOAMOAON L ) 0y o)
oL(1(0). PE(0), 1500) PC((;I)E{/) SOZCENORNOK! IR

1)




2) max{ (1e.@), P (), 151, PE@), @, (0,0, 0.t} = (@ () - . @) PE) - L (PE(D))
max{H (12(0), PE), 1202, P ), (0,07, (), ) = g, (1) TPE ) - F, (PECE)),

Ry ()20

3) A M)oc)=0 A (1)=
Af)ock)=0 Alt)=

4 (wa(T)-w(r )) (T)=0 ¢,(T)z0
w,(r)oi(r)=0 ¢(r)=z0

The optimal centralized production strategies fue manufacturer and the supplier
respectively are

. 0, if [F,] (. ()-w,) =<0,
P""(”‘{[Fm]-l(wm(t)—ws(t», it (R 0) -0 (1) >

and

0,
0.

. 0, it [F,] . (1)<
PS‘”‘{[FJWS@», it [Fol (. (0) >

Finally, consider a notation: lefl;, =J; +J: denote the optimal value of cost
function (5), where

= }[hﬂ e +F (P ot
and
- [l e + (e

4 The cooperative game theoretical solution of theost sharing

In this section we provide a sharing rule of theirsgs the cooperation induces. It is easy to
see the following result:

Lemma40<JS =J¢+J8<J8+73¢,

This result can be interpreted as follows: The totak of the decentralized system, i.e.
the sum of the supplier's and manufacturer's casthigher than that of the centralized
system. The question is now, how to share the sawnuyced by the players’ cooperation.

First, we introduce the concept of transferablbtyicooperative games. Let N= {1,

2,..., n} be the nonempty, finite set of the playévireover, letv:2" - 0 be a function
such thatv(@) = 0 where 2" is for the class of all subsets &f. Then v is called
transferable utility (TU) cooperative game, hendéfggame with player se\l .



Gamev can be interpreted as every coalition (subselgfhas a value. E.gS[1 N
is a coalition consisting of the players 8f and v(S ) is the value of coalitior§. The value
of a coalition can be the profit the coalition mergcan achieve if they cooperate, or the cost
they induce if they harmonize their actions.

In our model there are two players: the manufact(ne) and the suppliery), i.e.
N ={m,s}, and the value of a coalition is the cost the iioal member induce if they
coordinate their production plans and inventorgtsiies.

In the decentralized model the players do not baiee their actions, they achieve
their minimal costs independently of each otheer€fore (see Subsection 4.1)

v{my) =35
and
v({sh) =,

In the centralized model the manufacturer and thpplker form a coalition, i.e. they
cooperate. Therefore (see Subsection 4.2)

v({ms}) =J7..

Henceforth letv denote the supply chain game defined above.

To sum up the above discussion, the decentraimelcthe centralized model generate
a (TU cooperative) game.

To answer the question of how the players shouddlesthe savings their cooperation
induces, we apply four solution concepts of coojperaggame theory.

First, we introduce the concept obre (Gillies (1959)). In our model the core of
supply chain game is defined as follows:

C(v) ={xO00™%:x_+x =J°,x <J¢ x <J%,
wherex,, andxs are coordinates belonging to the manufacturertia@dupplier respectively.
The core can be described as it consists of ditota of the total cost of the

centralized model in the way of that none of thaypts can be better off by leaving the
centralized model, by stopping cooperation, i.e.dbre consists of stable (robust) allocations
of the costs. It is easy to see that in this malbelcore is not empty, i.e. there is a stable
allocation of the costs.

von Neumann and Morgenstern (1944) introduced dineept ofstable set. The stable set,
also called Neumann-Morgenstern solution. In oudehthe stable set is as follows:

Let 1(v) ={xO0™ :x, +x, =I5, X, <J5, % <J}, then I(v) is called the set of

imputations in supply chain game The stable set of supply chain gameS(v) is a subset
of 1(v) such that

- inner stability: for any xOS(v ) there does not existyOS(v )such that
Yt Ys <Xyt X,

- outer stability: for all xOI(v)—S(v) there exists yI(v ) such that
Yt Ys > Xy T X



The two stability conditions say that any elemehthe stable set cannot be better than
any other point of the sable set, and for any iratoim not in the stable set there exists an
element of the stable set dominating the given iatpan.

It is easy to see that in this model sing®) =C(v and the two stability conditions

are meaningless, we get the following result:

Lemma 5 Any supply chairgamev has a unique stable set, agf/) =C(v . )

Both the core and the stable set have the disagigaribat those generally consist of
many points, i.e. those are map-valued solutiom®réfore, the following natural question
comes up: How can we pick up only one point aslatisn? Next we consider two point-
valued solutions.

Shapley (1953) introduced the following point-valusolution concept: Th&hapley
value of the manufacturer and the supplier respectivelupply chain game

W), = 98 +2 (95, - 92),

and

SKWS=%J§+%@&—J;)

The Shapley value can be interpreted as it is geard value of the given player’s
marginal contribution. In other words, e.g. the ofacturer’s Shapley value is the expected
value with uniform distribution (1/2-1/2) of the mafacturer's marginal contribution to the

cost of the two coalitions not containing her, he &mpty collation J¢) and to coalition
{sh (I —35).

Next we show that in our model the Shapley solutom the core and in the stable
set, hence it is a real refinement of these two-waped solution concepts.

Lemma 6 For any supply chain game (Sh(v)m, Sh(v)s)D C(v) :
Proof. Take the manufacturer first: Lemma 4 implies that
1 1

(1) =238 +2 (35— I8 S 235+ 38,
2 2 2 2
i.e. (v), <J°. In a similar way we can see th@(v) < J¢.
Finally, it is well-known thatSh(v), , + Sh(v), = J.. (see e.g. Shapley (1953)). []

Lemmata 5 and 6 imply that the Shapley solutiosugdply chain game is in the stable set,
i.e. (Sh(v),,, Sh(v),) O S(v).

At last, we give thewcleolus of supply chain games. Schmeidler (1969) introduce
this point-valued solution concept (see Dreiss&88)). The nucleolus of supply chain game
Vv is

10



_Je +J4 -3¢ Je +J¢-7¢

(N(V)m == N(V), :#mj

The nucleolus can be interpreted as it is sucHlaoation that minimizes the maximal
exceeds the coalitions can achieve. It is a slggitulation to see that in our model the
nucleolus and the Shapley value coincide. Thisfahewing lemma is about.

Lemma 7 The nucleolus and the Shapley solution coincideupply chain games, i.e. for any
supply chain game& N(v) = Sh(v).

Moreover, Lemma 5 implies that the nucleolus ofpdyghain games is in the stable
set, i.e. for any supply chain gameN(v) 0S(v). It is well known that the nucleolus is

always in the core, if the core is nonempty; thenethat the core of a supply chain game is
not empty and Lemma 7 imply Lemma 5.

5 A numerical example
Take the following parameters and cost functiongroblems (1)-(2), (3)-(4) and (5)-(8):

- the initial inventory level of the manufacturer: |0 = 0.5,

- the initial inventory level of the supplier: lo= 0.3,

- the planning horizon: T =5 years,

- the demand rate of the manufacturer: S(t) = 0.45¢,

- the inventory holding cost of the manufacturer:hy, = 2,

- the inventory holding cost of the supplier: hs= 1,

- the production cost of the manufacturer: Fu(Pm(t)) = 0.5/P:2(t),
- the production cost of the supplier: Fo(Py(t)) = 5/P(t).

In the following we solve the decentralized anddbetralized problem.

5.1 The solution of the decentralized problem

The decentralized problem is a hierarchical prddactplanning problem. First the
manufacturer solves her planning problem then thteér@l ordering policy is forwarded to
the supplier. Finally, the supplier optimizes havnorelevant costs based on the known

ordering policy of the manufacturer.
The problem of the manufacturer is as follows:

J§[2Dm(t)+0.5ﬂ3nf(t)]dt - min
st
| (t)=P (t)-0501%1, () =05 0<t<5

The optimal solution is

11



0, if 0<t<0.728

Pa(t)= .
201 -1.456, if t<0.728<5,

and

19(t) = 0.5-0.151°, if 0<t<0.728
" 1.03-1.45600 +t? —0.150°%, if t<0.728<5.

The minimal cost of the manufacturer is 62.078s1nit

In the next step we solve the problem of the sepphlvhere the manufacturer’s
ordering policyP? [)is given:

T[lus(t) +5P2(O)t - min

st

I.t)=P{t)-P! 1), 1.0 =1, 0<t<5

The optimal solution for the supplier is

P¢(t) = 0.334+ 010, t 0[05]

and

If(t):{ 0.3+0.05[1°, if 0<t<0.728

-0.23+4.796[1 - 0952, if t<0.728<5.

The minimal cost of the supplier is 342.096 units.
5.2 The solution of the centralized problem

In the following we solve the centralized problem:

]'[ZDm(t)+O.5D3nf(t)+1DS(t)+5EPSz(t)]dt - min

s.t.
| (t)=P,(t)-S(t), 0<t<5

I.(t)=P(t)-P,(t), 0<t<5
1.(0)) (05
1.0)) 03

12



The optimal production rates are the followings:
PS(t) = 115+t,t0[05]

and

PS(t) = 309+ 02, t 0[05).

The optimal inventory levels for the manufactuned ghe supplier respectively are

1S (t) = 05+ 1150 + 050% - 01501°, tO[05]
and
1S(t) = 03+ 19400 - 04 (1%, t0[05].

The minimal cost of the centralized system is 4PB.4nits, where the manufacturer’'s cost is
67.056 units and the supplier’s cost is 333.36%suni

5.3 Comparison of the solutions of the decentraligeand the centralized system

First, compare the production rate and inventovgllef the manufacturer and the supplier in
the cases of the decentralized and the centraBgstém, where Imd(t), Imc(t), Isd(t) and

Isc(t) are for the inventory level for the manutaetr and for the supplier in the decentralized
and the centralized model respectively.

Figure 2 The inventory level of the manufacturer inthe decentralized and the
centralized system

13



10 | |

Isd(t)

Figure 3 The inventory level of the supplier in thedecentralized and the centralized
system

In this example the inventory level of the manufiaet decreases in the case of cooperation,
i.e. in the centralized system. The inventory lewélthe supplier increases when the
participants cooperate in the supply chain, seareg2 and 3.

15 | |

Figure 4 The production rate of the manufacturer inthe decentralized and the
centralized system

As we see, the production level in the centraliggstem is smoother, i.e. the growth of the

production rate is smaller than that in the casthefdecentralized system, and the contrary is
true for the supplier, i.e. in the decentralizedtegn the production rate of the supplier is

smoother than that in the centralized system, wRend(t), Pmc(t), Psd(t) and Psc(t) are for

the production level for the manufacturer and toe supplier in the decentralized and the

centralized models respectively, and S(t) is far éltogenously given demand, see Figures 4
and 5. This phenomenon is the decreased bullwkggtah the centralized model.

14
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Psd(t) 10 .
Psc(t)
S(t) 5[ T
I I
0 0 2 4

Figure 5 The production rate of manufacturer in thedecentralized and the centralized
system

The optimal costs of the decentralized and therakkréd problem are presented in Table 1.

Decentralized Centralized

problem Problem

Manufacturer costs 62.078 67.056
Supplier costs 342.069 333.369
Total costs 404.148 400.425

Table 1 The optimal costs

As we have seen, the total cost of the centralipemblem is lower than that of the
decentralized one. The cost reduction is approxipat%. In the centralized problem the
manufacturer cost increases with more than 8% lamdupplier cost decreases with 2.5%.

After the above analysis the question of how taesiae savings, the cooperation of
the participants in the supply chain induces, coupes

5.4 Cost sharing

The Shapley value of the manufacturer and the gmpgit coincides with the
nucleolus and is in the core and in the stableaetfh (v) = 60. 217and Shy(v) =340 208

respectively. It means that the players share gaeiings equally.
It is important to see that since in the case obpesation J; = 67.056and
J¢ =333.369a transfer is needed to get the Shapley valuesubpelier must transfer 6.839

units to the manufacturer. It means that the manufar and the supplier agree on a contract
such that the parties commit themselves to cooperad the supplier commits herself to pay
6.839 units to the manufacturer.

6. Conclusion and further research
In this paper we have solved two two-stage supplgirc models: a decentralized and a

centralized model. We have showed that the coaperat the two players induces savings in
costs.

15



In the next step we have considered sharing fioleshe savings. We have applied
cooperative game theory solution concepts to thablpm, and we have introduced the
concept of supply chain games. It was shown thauipply chain games the core and the
stable set coincide, so do the Shapley value amadkleolus; therefore the Shapley value is
always in the core.

As an illustration for our results we have presdran exact number example. In this
example the supplier's cost of adaption in productio the fluctuations in the orderings of
the manufacturer is higher than that of the martufac. Moreover, the production costs are
dominant over the inventory costs. Therefore mas$ surprising at all that in the centralized
model the supplier has reduced her inventory leasd, the manufacturer’s inventory level is
higher than that in the decentralized model, acd versa for the supplier.

The reason of this fact is that the manufactureminmizes her relevant cost in the
decentralized model, so that her production lev@lgar to the demand rate. After cooperation
the manufacturer gives up to follow her cost optipraduction strategy to allow the supplier
to reduce her own production-inventory cost implyia decrease in the total cost of the
supply chain as well, since the supplier's costirgawalances out the increase of the
manufacturer’s cost.

This phenomenon points at the well known bullwhiie& of supply chains in a way:
the supplier decreased the inventory level aftéwrination sharing (cooperation), and she
adjusted her production rate closer to the demated r

In this type supply chains the two players mighvéhasymmetrical roles. It can
happen that the manufacturer has much strongeninang position than that of the supplier
or vice versa. Since this asymmetry in the barggiowers is exogenously given, it is not
reflected by the proposed solution, by the Shapigye. The future research can propose
solutions concepts which can reflect the exogeryagisen bargaining powers.

Acknowledgment.

Miklos Pinter gratefully acknowledges the financglpports by the Hungarian Scientific
Research Fund (OTKA) and the Janos Bolyai Rese&ddtolarship of the Hungarian
Academy of Sciences.

16



References

Arrow, K.J., Karlin, S. (1958): Production over gmwith increasing marginal costs, In: K.J.
Arrow, S. Karlin, H.Scarf (Eds.): Studies in the thematical theory of inventory and
production, Stanford Univ. Press, Stanford, 61-69

Disney, S. M., Towill, D. R. (2003): On the bullyghand inventory variance produced by an
ordering policy, Omega: The International Jourrfdllanagement Science 31, 157-167
Driessen, T. (1988)Cooperative Games, Solutions and Applications, Kluwer Academic
Publishers

Feichtinger, G., Hartl, R.F. (1986): Optimale Kaflig 0Okonomischer Prozesse:
Anwendungen des Maximumprinzips in den Wirtschafisenschaften, de Gruyter, Berlin
Forrester, J. (1961): Industrial dynamics, MIT BrgSambridge, MA

Ghali, M.A. (2003): Production-planning horizonpguction smoothing, and convexity of the
cost function, Int. J. of Production Economics &1-87-74

Gillies, D.B. (1959): Solutions to general non-zeton games: Contributions to the theory of
games IV., Princeton University Press, Princeton

Kogan, K, Tapiero, C.S. (2007): Supply chain gam@gerations management and risk
valuation, Springer, New York, NY

Lee, H. L., Padmanabhan, V., Whang, S. (1997): Quikvhip effect in supply chains, Sloan
Management Review, Spring, 93-102

Schmeidler, D. (1969): The nucleolus of a charatierfunction game, SIAM Journal of
Applied Mathematics 17, 1163-1170

Seierstad, A., Sydsaeter, K. (1987): Optimal cdntheory with economic applications,
North-Holland, Amsterdam

Sethi, S.P., Yan, H., Zhang, H. (2005): Inventang aupply chain management with forecast
updates, Springer, New York, NY

Shapley, L.S. (1953): The value foiperson games, In: Kuhn, H.W., Tucker, AW. (Eds.):
Contributions to the theory of games II, AnnalesMé&thematics Studies 28., Princeton
University Press, Princeton, 307-317

von Neumann, J., Morgenstern, O. (1944): Theorygafmes and economic behavior,
Princeton University Press, Princeton

Wagner, H.M., Whitin, T. M. (1958): Dynamic versiaf the economic lot size model,
Management Science 5, 89-96

17



